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Deterministic Preparation of Dicke States

Andreas Bärtschi∗ Stephan Eidenbenz

Los Alamos National Laboratory

Abstract

The Dicke state |Dn
k 〉 is an equal-weight superposition of all n-qubit states with

Hamming Weight k (i.e. all strings of length n with exactly k ones over a binary
alphabet). Dicke states are an important class of entangled quantum states that among
other things serve as starting states for combinatorial optimization quantum algorithms.

We present a deterministic quantum algorithm for the preparation of Dicke states.
Implemented as a quantum circuit, our scheme uses O(kn) gates, has depth O(n)
and needs no ancilla qubits. The inductive nature of our approach allows for linear-
depth preparation of arbitrary symmetric pure states and – used in reverse – yields a
quasilinear-depth circuit for efficient compression of quantum information in the form
of symmetric pure states, improving on existing work requiring quadratic depth. All of
these properties even hold for Linear Nearest Neighbor architectures.

1 Introduction
Within quantum computing, the seemingly mundane task of (efficient) state preparation is
actually a separate research topic. Recall that a quantum state over n qubits is a super-
position

∑
x∈{0.1}n cx |x〉 of all 2n binary strings x of length n with complex weights cx such

that
∑

x∈{0,1}n |cx|2 = 1. The problem of preparing an arbitrary quantum state can be solved
with Θ(2n) quantum gates [27], which can be improved to a polynomial number of gates for
states which have a polynomial number of non-zero weights cx. The intriguing algorithmic
question then becomes for what other classes of quantum states do polynomial-time state
preparation algorithms exist? Very few results exist on this topic and we are still far from
having a comprehensive solution, however, Dicke states form such a class: the Dicke state
|Dn

k 〉 has
(
n
k

)
non-zero weights, which is not polynomial in n for super-constant k.

Among different types of highly entangled states, the family of Dicke states [7] has gar-
nered widespread attention for tasks in quantum networking [24], quantum game theory [34],
quantum metrology [30] and as starting states for combinatorial optimization problems via
adiabatic evolution [5]. Perhaps most promisingly – Dicke states can be used in the Quan-
tum Alternating Operator Ansatz (QAOA) framework [10, 13] for combinatorial optimization
problems with hard constraints, as a starting state for the actual QAOA algorithm where
they represent a superposition of all feasible solutions (in some problem variations).
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Definition 1. A Dicke state |Dn
k 〉1 is the equal superposition of all n-qubit states |x〉 with

Hamming weight wt(x) = k,

|Dn
k 〉 =

(
n
k

)− 1
2

∑
x∈{0,1}n, wt(x)=k

|x〉.

We have, e.g., |D4
2〉 = 1√

6
(|1100〉+ |1010〉+ |1001〉+ |0110〉+ |0101〉+ |0011〉), a state

that has been studied for its entanglement properties: from |D4
2〉, we can generate both

3-qubit W3-states |D3
1〉 and GHZ -class G3-states 1√

2
(|D3

1〉 − |D3
2〉) by a (local) projective

measurement of the same qubit [18], whereas these two states cannot be transformed into
each other by stochastic local manipulations [9]; these types of basic transformations of states
are non-trivial in quantum computing.

Result Overview. Despite successful experimental creation of Dicke states in physical
systems such as trapped ions [14, 16, 19], atoms [29, 33, 26], photons [24, 31] and supercon-
ducting qubits [32], efficient quantum circuits for the preparation of arbitrary Dicke states
|Dn

k 〉 have received little attention. In this paper, we present – as our main contribution – a
circuit for deterministic preparation of Dicke states which, given as input the easily prepared
classical state |0〉⊗n−k |1〉⊗k, prepares the Dicke state |Dn

k 〉. Our circuit has depth O(n) –
independent of k – and needs O(kn) gates in total. Circuit depth is equivalent to run time
and gate count is a measure for overall resource needs. In fact, any difference between gate
count and depth can be attributed to gate-level parallelism. Finding minimal-depth circuits
is particularly crucial for Noisy Intermediate Scale Quantum (NISQ) devices, which do not
allow for full error correction, and thus experience (unwanted) decoherence the longer a com-
putation lasts. Minimizing overall gate count is crucial as each gate operation introduces
noise, thus impacting result quality.

Leveraging our main result, we show (i) that all our bounds even hold for Linear Nearest
Neighbor architectures, where each qubit is connected only to its two neighbors, which is a
more realistic assumption for most NISQ devices than the standard all-to-all connectivity,
(ii) that our circuit can be extended to prepare arbitrary symmetric pure states using linear
circuit depth, where a state is symmetric if it is invariant under permutation of the qubits,
and (iii) how to use our construction for compression of quantum information, which is the
problem of compressing a symmetric pure n-qubit state into dlog(n + 1)e qubits without
information loss.

Previous Approaches. Previous work has prepared Dicke states probabilistically with
success probability Ω( 1√

n
) by applying a biased Hadamard transform to each qubit [5], fol-

lowed by postselecting the Dicke state through addition of each of the n qubits into an ancilla
register of size log n initialized to the |0〉 state [6] and a projective measurement thereof. A
later contribution [4] uses a more involved preparation strategy – giving numerical evidence of
a constant-factor improved probability – followed by a generalized parity measurement [15],
also pointing out the potential use of amplitude amplification. Deterministic preparation
circuits without the use of ancilla qubits have been known for the special case of W -states
|Dn

1 〉, either by an iterative construction of quadratic circuit size and depth [8] or by a linear
1Various symbols for Dicke states are used in the existing literature, e.g., |Dn

k 〉, |D
(k)
n 〉,

∣∣n
k

〉
or |n; k〉.
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number of large multi-controlled rotation gates [20]. An inductive approach to construct
Dicke states up to error ε [22] uses Ω(log k + log 1

ε
) ancilla qubits to count the Hamming

weight of the qubits processed so far, to then use this register as a control for rotation gates
on the next qubit, yielding a superlinear circuit size and depth overall. Our approach im-
proves on all of these results in terms of circuit size and depth; additionally, it does not
require ancilla qubits, is fully deterministic and in some cases more general.

Relation to Quantum Compression. There exists an interesting relationship between
Dicke states and quantum compression. Quantum compression can be understood through
the quantum Schur-Weyl transform [1], which separates the angular momentum information
of a state from its – for symmetric states trivial – permutation information.

The Schur-Weyl transform has been implemented experimentally for a separable sym-
metric 3-qubit state [25], i.e. a state of the form (α |0〉+ β |1〉)⊗3 =

∑3
`=0 α

3−`β`
(
3
`

)
1/2 |D3

` 〉.
A high-level description of a circuit for general n, using no ancilla qubits, has also been
developed [23]. The major circuit part in [23] is of size and depth Θ(n2) and maps each
Dicke state |Dn

` 〉 to the state |0〉⊗`−1 |1〉 |0〉⊗n−`, too. Its inverse circuit can therefore be
used to prepare Dicke states with depth Θ(n2). Our approach in reverse, on the other hand,
will yield a quantum compression circuit of size O(n2) and reduced quasilinear depth Õ(n),
where Õ(·) hides polylogarithmic factors due to the compression part of the circuit (mapping
terms of the form |0〉⊗`−1 |1〉 |0〉⊗n−` or |0〉⊗n−` |1〉⊗`, respectively, into dlog(n+ 1)e qubits).

Outline. This article is organized as follow: In Section 2, we present an iterative con-
struction of a circuit for deterministic preparation of arbitrary Dicke states. We analyze its
gate count and circuit depth, and extend these bound to Linear Nearest Neighbor archi-
tectures in Section 3. In Section 4, we show how our construction can be used to create
arbitrary symmetric pure states, written as a superposition of Dicke states, and we present
an improved scheme for efficient compression of quantum information. A detailed compar-
ison with existing work on quantum compression as well as a step-by-step example is in
Appendix A.

2 Deterministic Dicke State Preparation
In order to prepare Dicke states, we design a unitary operator Un,k which, given as input
the classical state |0〉⊗n−k |1〉⊗k (which appears itself as a term in the superposition |Dn

k 〉),
generates the entire Dicke state |Dn

k 〉. Additionally, Un,k also generates Dicke states |Dn
` 〉 for

smaller ` < k, when given as input a string |0〉⊗n−` |1〉⊗`:

Definition 2. Denote by Un,k any unitary satisfying for all ` ≤ k : Un,k |0〉⊗n−` |1〉⊗` = |Dn
` 〉.

Having this property not only for ` = k but for all ` ≤ k will allow us to build a unitary
Un,k inductively, by making use of the following composition (also observed, e.g., in [19, 21]):

Lemma 1. Dicke states |Dn
` 〉 have the inductive sum form

|Dn
` 〉 =

√
`
n
|Dn−1

`−1 〉 ⊗ |1〉+
√

n−`
n
|Dn−1

` 〉 ⊗ |0〉 .
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Proof. We simply rewrite |Dn
` 〉 :=

(
n
`

)− 1
2
∑

x∈{0,1}n,wt(x)=` |x〉 as

|Dn
` 〉 =

√
1

(n`)

∑
x∈{0,1}n−1

wt(x)=`−1

|x〉 ⊗ |1〉+

√
1

(n`)

∑
x∈{0,1}n−1

wt(x)=`

|x〉 ⊗ |0〉

=

√
(n−1
`−1)
(n`)
|Dn−1

`−1 〉 ⊗ |1〉+

√
(n−1

` )
(n`)
|Dn−1

` 〉 ⊗ |0〉

=
√

`
n
|Dn−1

`−1 〉 ⊗ |1〉+
√

n−`
n
|Dn−1

` 〉 ⊗ |0〉 .

The Dicke states |Dn−1
`−1 〉 and |D

n−1
` 〉 can both be prepared by the same unitary Un−1,k

given the classical input states |0〉⊗n−` |1〉⊗`−1 and |0〉⊗n−1−` |1〉⊗`, respectively. The idea is
therefore – in order to inductively design Un,k – to apply the composition given by Lemma 1
to the input states |0〉⊗n−` |1〉⊗` for all ` ≤ k, before applying the smaller unitary Un−1,k.
Hence for ` ≤ k, we are looking for unitary transformations of the form

|0〉⊗n−k−1 |0〉⊗k+1−` |1〉⊗` 7→
√

`
n
|0〉⊗n−k−1 |0〉⊗k+1−` |1〉⊗` +

√
n−`
n
|0〉⊗n−k−1 |0〉⊗k−` |1〉⊗` |0〉 .

Note that this transformation acts trivially on the first n− k − 1 qubits. Intuitively, it can
be described as taking the last k + 1 of n qubits as an input, splitting the input term into a
superposition of two parts, and cyclicly shifting the second part by one position to the left.
We call a unitary that simultaneously implements this transformation for all ` ∈ 0, . . . , k a
Split & Cyclic Shift unitary SCSn,k:

Definition 3. Denote by SCSn,k any unitary satisfying for all ` ∈ 1, . . . , k, where k < n:

SCSn,k |0〉⊗k+1 = |0〉⊗k+1 ,

SCSn,k |0〉⊗k+1−` |1〉⊗` =
√

`
n
|0〉⊗k+1−` |1〉⊗` +

√
n−`
n
|0〉⊗k−` |1〉⊗` |0〉 ,

SCSn,k |1〉⊗k+1 = |1〉⊗k+1 .

Before we describe the inductive construction of the unitaries Un,k in terms of unitaries
SCSn,k and Un−1,k, we review SCSn,k (acting on the last k+ 1 qubits) and Un−1,k (acting on
the first n− 1 qubits) in comparison:

SCSn,k : |00..000〉 7→ |00..000〉

|00..001〉 7→
√

1
n
|00..001〉+

√
n−1
n
|00..010〉

|00..011〉 7→
√

2
n
|00..011〉+

√
n−2
n
|00..110〉

...
|01..111〉 7→

√
k
n
|01..111〉+

√
n−k
n
|11..110〉

|11..111︸ ︷︷ ︸
k+1

〉 7→ |11..111〉

Un−1,k : |0..000..00〉 7→ |Dn−1
0 〉

|0..000..01〉 7→ |Dn−1
1 〉

|0..000..11〉 7→ |Dn−1
2 〉

...
|0..001..11〉 7→ |Dn−1

k−1〉

|0..0︸︷︷︸
n−1−k

11..11︸ ︷︷ ︸
k

〉 7→ |Dn−1
k 〉
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= =
Un,k

|0〉⊗n−k−1

Un−1,k

k
+

1

n− k : | 〉
Split &

Cyclic Shift
SCSn,k

...
n− 1: | 〉

n : | 〉

|slic
e1〉

|slic
e3〉

|slic
e2〉

SCSn,k

SCSn-1,k

SCS k+1,k

SCS 3,2
SCS 2,1

. . .

. . .

Figure 1: Inductive construction of the unitaries Un,k from the unitaries SCSn,k and Un−1,k.

2.1 Inductive Construction of Un,k
An explicit construction of Split & Cyclic Shift unitaries in terms of standard gates will
be given in Subsection 2.2. For now, however, we will show how arbitrary Un,k unitaries
can be constructed inductively from unitaries SCSn,k (acting on the last k + 1 qubits) and
Un−1,k (acting on the first n − 1 qubits). Clearly, we must have U1,1 = Id. We construct
unitaries of the form Uk,k by iteratively applying SCS k,k−1 immediately before Uk−1,k−1, i.e.
Uk,k = (Uk−1,k−1 ⊗ Id) · SCS k,k−1. Arbitrary unitaries Un,k can be built by preceding Un−1,k
with SCSn,k, as shown in Figure 1, giving Un,k = (Un−1,k ⊗ Id) · (Id⊗n−k−1 ⊗ SCSn,k).2
Telescoping these recursions we get:

Lemma 2. The following inductive construction of Un,k is consistent with Definition 2:

Un,k :=
k∏
`=2

(
SCS `,`−1 ⊗ Id⊗n−`

)
·

n∏
`=k+1

(
Id⊗`−k−1 ⊗ SCS `,k ⊗ Id⊗n−`

)
.

Proof. We show by induction over n that for all ` ≤ k we have Un,k |0〉⊗n−` |1〉⊗` = |Dn
` 〉.

For the base case U2,2 we have directly by Definition 3 that SCS 2,1 |00〉 = |00〉 =: |D2
0〉,

SCS 2,1 |01〉 = 1
2
(|01〉 + |10〉) =: |D2

1〉, SCS 2,1 |11〉 = |11〉 =: |D2
2〉 and thus for ` ≤ 2 that

U2,2 |0〉⊗2−` |1〉⊗` := SCS 2,1 |0〉⊗2−` |⊗1〉` = |Dn
` 〉. We proceed by induction, first considering

the simpler step Un−1,k → Un,k, where k ≤ n−1, then moving on to the step Uk−1,k−1 → Uk,k:

Step Un−1,k → Un,k. We show Un,k |0〉⊗n−` |1〉⊗` = |Dn
` 〉 for all ` ≤ k ≤ n − 1 by

analyzing the three time-slices depicted in Figure 1. As input to the circuit we have a
corresponding state |slice1〉 = |0〉⊗n−` |1〉⊗` for some ` ∈ 0, . . . , k. Applying Lemma 1 at the
end, we get

|slice2〉 = (Id⊗n−k−1 ⊗ SCSn,k) |0〉⊗n−` |1〉⊗`

= |0〉⊗n−k−1 ⊗
(√

`
n
|0〉⊗k+1−` |1〉⊗` +

√
n−`
n
|0〉⊗k−` |1〉⊗` |0〉

)
=
√

`
n
|0〉⊗(n−1)−(`−1) |1〉⊗`−1 ⊗ |1〉+

√
n−`
n
|0〉⊗(n−1)−` |1〉⊗` ⊗ |0〉 ,

|slice3〉 = (Un−1,k ⊗ Id) |slice2〉 =
√

`
n
|Dn−1

`−1 〉 ⊗ |1〉+
√

n−`
n
|Dn−1

` 〉 ⊗ |0〉 = |Dn
` 〉 .

2An inductive approach which “sandwiches” smaller unitaries has previously been used forW -states |Dn
1 〉,

albeit with depth O(n2) [8].
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Step Uk−1,k−1 → Uk,k. We show Uk,k |0〉⊗k−` |1〉⊗` = |Dk
` 〉 for all ` ≤ k. Replacing k by

k − 1 and n by k in the previous analysis, we immediately get that for ` ≤ k − 1 the state
|slice1〉 = |0〉⊗k−` |1〉⊗` maps to |slice3〉 = |Dk

` 〉. It remains to show the same for ` = k:

|slice3〉 = (Uk−1,k−1 ⊗ Id) · SCS k,k−1 |slice1〉 = (Uk−1,k−1 ⊗ Id) · SCS k,k−1 |1〉⊗k

= (Uk−1,k−1 ⊗ Id) |1〉⊗k = |Dk−1
k−1〉 ⊗ |1〉 = |1〉⊗k = |Dk

k〉 .

2.2 Explicit Construction of SCSn,k
In the following, we describe a clean construction of an arbitrary Split & Cyclic Shift unitary
SCSn,k in terms of 1 two-qubit gate and k − 1 three-qubit gates, each of which implements
exactly one of the k non-trivial mappings for ` ∈ 1, . . . , k given in Definition 3:

|0〉⊗k+1−` |1〉⊗` →
√

`
n
|0〉⊗k+1−` |1〉⊗` +

√
n−`
n
|0〉⊗k−` |1〉⊗` |0〉 . (1)

Building Blocks. The relevant qubits in this mapping are the last (nth) qubit as well as
the pair of qubits in which there is a change in the binary string from 0’s to 1’s (the (n−`)th
and (n−`+1)th qubits). Using the notation |xy〉a to say that qubits a and a+1 are in states
x and y, respectively, the two- and three-qubit gates are defined and easily constructed by:

(i) |00〉n−1 → |00〉n−1
|11〉n−1 → |11〉n−1
|01〉n−1 →

√
1
n
|01〉n−1 +

√
n−1
n
|10〉n−1

(ii)` |00〉n−` |0〉n → |00〉n−` |0〉n
|01〉n−` |0〉n → |01〉n−` |0〉n
|00〉n−` |1〉n → |00〉n−` |1〉n
|11〉n−` |1〉n → |11〉n−` |1〉n
|01〉n−` |1〉n →

√
`
n
|01〉n−` |1〉n +

√
n−`
n
|11〉n−` |0〉n

n− 1 Ry(2 cos−1
√ 1

n
)

n

n− ` Ry(2 cos−1
√ `

n
)

n− `+ 1

. . .

n

The two-qubit gate (i) and the k − 1 three-qubit gates (ii)` for 2 ≤ ` ≤ k are each con-
structed by a (two-)controlled Y -rotation Ry

(
2 cos−1

√ `
n

)
mapping |0〉 →

√ `
n
|0〉+

√n−`
n
|1〉,

conjugated with a CNOT on the last qubit n. Here, we use Ry(2θ) =
(
cos θ − sin θ
sin θ cos θ

)
.

Putting it all together. Note that the states |0〉⊗k+1 and |1〉⊗k+1 remain unchanged under
each of the k gates (i), (ii)`. Furthermore, for any given 1 ≤ `∗ ≤ k, there is exactly one of the
k gates (i), (ii)` affecting the state |0〉⊗k+1−`∗ |1〉⊗`

∗
, namely the one with matching ` = `∗.

It maps |01〉n−`∗ |1〉n →
√ `∗

n
|01〉n−`∗ |1〉n +

√n−`∗
n
|11〉n−`∗ |0〉n, implementing Equation (1).

The resulting second term |0〉⊗k−`
∗
|1〉⊗`

∗
|0〉 remains unaffected by all gates (ii)` with

larger ` > `∗. Hence we can build a complete SCSn,k gate starting with the two-qubit
gate (i) followed the k − 1 three-qubit gates (ii)` order by increasing `. For an illustration
of SCS 5,3, SCS 4,3, SCS 3,2 and SCS 2,1 – together composing U5,3 – see Figure 2. The example
can also be opened and verified in Quirk [11] following this link.
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Figure 2: Preparation of the Dicke state |D5
3〉 with SCS gates implementing a unitary U5,3.√ `

n
-gates are shorthand for Y -Rotations Ry

(
2 cos−1

√ `
n

)
, mapping |0〉 →

√ `
n
|0〉+

√n−`
n
|1〉.

3 Circuit Size and Depth
We now analyze the size and depth of our circuit construction and show how to adapt the
circuit to be used on Linear Nearest Neighbor (LNN) architectures, where 2-qubit gates can
only be implemented between neighboring qubits:

Theorem 1. Dicke states |Dn
k 〉 can be prepared with a circuit of size O(min(k, n − k) · n)

and depth O(n), even on Linear Nearest Neighbor architectures.

Proof (Arbitrary 2-qubit gates). Note that an alternate way to prepare a Dicke state |Dn
k 〉 is

to prepare the Dicke state |Dn
n−k〉 followed by X-gates on each qubit, as |Dn

k 〉 = X⊗n |Dn
n−k〉.

Thus we prove size O(kn) for Dicke states |Dn
k 〉, implying size O((n− k)n) for |Dn

k 〉, too.
We first show that the depth of our circuit construction is linear: The structure of each

SCSn,k implementation is a stair of 2-qubit blocks interacting with its bottom qubit n. These
stairs can be “pushed into each other”. In particular, the 3-qubit gate (ii)k of SCSn,k acts on
qubits n− k, n− k+ 1 and n. It can therefore be run in parallel with k∗ := bk+1

3
c − 1 many

other 3-qubit gates, namely gate (ii)k−3 of SCSn−1,k (acting on qubits n−k+2, n−k+3, n−1)
as well as gates (ii)k−6, . . . , (ii)k−3k∗ of SCSn−2,k, . . . , SCSn−k∗,k, respectively. Since we can
parallelize k∗ ∈ O(k) stairs, the total depth is linear in the depth of gates (i), (ii)` (constant)
and the number of gates (i), (ii)` (O(kn)) divided by k∗, yielding an overall depth of O(n).

In light of a possible implementation, we prove the circuit size in Theorem 1 by compiling
Un,k down to at most 5kn+O(n) CNOT -gates and 4kn+O(n) arbitrary precision Ry-gates.
To build Un,k from SCS unitaries, we need a total of n − 1 many 2-qubit gates (i) and
(n− k) · (k − 1) +

∑k
i=3(i− 2) = kn− k2

2
+O(n) many 3-qubit gates (ii)`, see Figure 2. It

remains to show that (ii)`-gates can be implemented with 5 CNOT gates and 4 Ry gates.
We provide such an implementation in Figure 3: A two-controlled CCRy(2θ) rotation gate
is easily seen to be implemented with 4 Ry(± θ

2
) rotation gates and 4 CNOT s, the first one

of which we can cancel by rearranging the preceeding conjugating CNOT gate.

CCRy(2θ)

=
Ry(2θ) Ry(− θ

2
) Ry(

θ
2
) Ry(− θ

2
) Ry(

θ
2
)

× ×
Figure 3: Implementing a CNOT -conjugated two-control CCRy(2θ) rotation gate (as given
in a (ii)` gate, see Figure 2) with four single-qubit Ry(± θ

2
) gates and four CNOT s, one of

which can be cancelled by rearranging the last CNOT of the preceding (i)/(ii)`−1 gate.
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Figure 4: Linear circuit depth on LLN architectures is achieved by bn
k
c blocks of O(k) SCS

unitaries which can be implemented using O(k2) gates and O(k) depth (here: n = 15, k = 5).

Proof (LNN architectures). In order to have the same asymptotic behaviour in terms of size
and depth on LNN architectures, we need to slightly adapt our circuit. First note any 3-qubit
gate that spans neighboring triples of qubits can be implemented with a constant number of
one- and two-qubit LNN gates. Hence, when building unitaries SCSn,k from (ii)`-gates, we
sift up qubit n by always swapping it one position upwards such that it lies on wire n−`+2.

In order to achieve size O(kn) and depth O(n) we group SCS unitaries into bn
k
c−1 groups

of k consecutive unitaries, see e.g. Figure 4 where we group SCS 15,5, SCS 14,5, . . . , SCS 11,5.
As mentioned, to implement SCSn,k on wires n, . . . , n− k we sift up qubit n until it reaches
wire n−k+2. We then continue to let it sift up to wire n−2k+1. In parallel we implement
SCSn−1,k (due to the sifting up of qubit n also on wires n, . . . , n − k) in a similar fashion.
Again we let qubit n − 1 sift up to wire n − 2k + 1. Implementing this in parallel for all
SCSn,k, . . . , SCSn−k+1,k needs sizeO(k2) and depthO(k) and ends with qubits n−k+1, . . . , n
on wires n− 2k+ 1, . . . , n− k and vice versa, see the the red-dashed slice in Figure 4. Using
another O(k2) gates and O(k) depth we let qubits n− k+ 1, . . . , n sift down in parallel back
to their original wires, which also moves qubits n− 2k+ 1, . . . , n− k back to their positions.
The same technique can be used for all blocks of SCS gates on their respective positions.

We are left with a group of (n mod k) + k < 2k SCS unitaries. For those, we always
sift up the respective qubits up to wire 1. Again, we need O(k2) gates and a depth of order
O(k). Overall, we need O(n

k
· k2) = O(kn) gates and O(n

k
· k) = O(n) depth. Note that the

sift-down operations (which we did not apply on the last group of qubits) are not necessary
for correctness – they are needed to prevent a blow-up from O(kn) to O(n2) gates overall.

4 Symmetric Pure States and Quantum Compression
Our inductive approach yields (for k = n) a unitary Un,n which – with O(n2) gates and O(n)
depth – can be used to prepare any Dicke state |Dn

` 〉 , 1 ≤ ` ≤ n for the respective input
|0〉⊗n−` |1〉⊗`. Therefore, every superposition of these input states leads to a superposition
of Dicke states. In the following, we show how this can be used to (i) prepare arbitrary
symmetric pure n-qubit states in linear depth O(n), and to (ii) compress symmetric pure n-
qubit states into dlog(n+1)e qubits in quasilinear depth Õ(n) using the reverse unitary U †n,n.
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|0〉 β4 Rψ5

Un,n

∑ ei
φ
`
α
`
|D

n `
〉

|0〉 β3 Rψ4

|0〉 β2 Rψ3

|0〉 β1 Rψ2

|0〉 β0 Rψ1 (α
|0
〉+

β
|1
〉)
⊗
n

U †n,n

|0〉
|0〉
|0〉
|0〉

dlog(n+ 1)e qubits

Figure 5: (left) Arbitrary superposition of Dicke states, using Y -rotations Ry(2 cos−1 β`) with
β` =

√ α2
`

1−α2
0−...−α2

`−1
and phase-shift gates Rψ` with ψ` = φ`− φ`−1, followed by unitary Un,n.

(right) Efficient compression of n identical qubits into dlog(n+1)e qubits using unitary U †n,n.

4.1 Symmetric Pure States

As the n + 1 different Dicke states |Dn
` 〉 form an orthonormal basis of the fully symmetric

subspace of all pure n-qubit states, every symmetric pure state can be expanded in terms of
Dicke states [3], i.e. in the form ∑

`

eiφ`α` |Dn
` 〉

with magnitudes α` ∈ [0, 1], α2
0 + . . .+ α2

n = 1 and phases φ` ∈ [0, 2π), φ0 = 0. We show:

Theorem 2. Every symmetric pure n-qubit state can be prepared with a circuit of size O(n2)
and depth O(n), even on Linear Nearest Neighbor architectures.

Proof. By Theorem 1, given as input the state
∑

` e
iφ`α` |0〉⊗n−` |1〉⊗`, the unitary Un,n pre-

pares
∑

` e
iφ`α` |Dn

` 〉 on LNN architectures using O(n2) gates and O(n) depth. We prove
that this input state can be constructed in linear depth and size.

To this end, we define magnitudes β` := α`(1− α2
0 − . . .− α`−1)−1/2 and angles ψ0 := 0,

ψ` := φ` − φ`−1. The original values α, φ relate to the parameters β, ψ as φ` =
∑`

k=0 ψk
and α` = β` ·

∏`−1
k=0

√
1− β2

k . As already introduced in Section 3, we use Y -rotation gates
Ry(2 cos−1 β) to map |0〉 → β |0〉 +

√
1− β2 |1〉. Additionally, we use phase shift gates

Rψ =
(
1 0
0 eiψ

)
to map |1〉 → eiψ |1〉.

We start with a rotation Ry(2 cos−1 β0) on the n-th qubit. This is followed by a linear-
depth stair of controlled Ry(2 cos−1 β`)-rotations on the (n − `)th qubit, controlled by the
previous qubit n− ` + 1 being in state |1〉, as shown in Figure 5 (left). Finally, we add the
correct phases using a layer of Rψ`-phase shifts on respective qubits n − ` + 1, yielding the
desired state:

|0〉⊗n β0−−−−−−→ α0 |0〉⊗n +
√

1− α2
0 |0〉

⊗n−1 |1〉

β1−−−−−−→ α0 |0〉⊗n + α1 |0〉⊗n−1 |1〉+
√

1− α2
0 − α2

1 |0〉
⊗n−2 |11〉

β2,...,βn−1−−−−−−→
∑

`
α` |0〉⊗n−` |1〉⊗`

ψ1,...,ψn−−−−−−→
∑

`
eiφ`α` |0〉⊗n−` |1〉⊗` .
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4.2 Quantum Compression

As symmetric pure states live in the (n + 1)-dimensional symmetric subspace of the full
Hilbert space, they can be described with exponentially fewer dimensions than general multi-
qubit states. This is the idea behind the quantum Schur-Weyl transform [1], which separates
the permutation information from the angular momentum information of a state. Applied
to a symmetric pure state, it will compress the angular momentum information into only
dlog(n+ 1)e qubits, while the rest of the qubits (the trivial permutation information) can be
discarded without loss of information.

A previous approach to implement this transform for symmetric states [23] gave a high-
level description of a circuit of size and depth Θ(n2) that needs no ancillas. The major part
is a transformation of Dicke states |Dn

` 〉 to a one-hot encoding |0〉⊗`−1 |1〉 |0〉⊗n−` of their
Hamming weight `. Substituting this part with our unitary in reverse, U †n,n, improves the
overall circuit depth to quasilinear:3

Theorem 3. Every symmetric pure n-qubit state can be compressed into dlog(n+ 1)e qubits
with a circuit of size O(n2) and depth Õ(n), even on Linear Nearest Neighbor architectures.

We illustrate our approach with a particular interesting symmetric pure state, the separa-
ble state (α |0〉+ β |1〉)⊗n =

∑
αn−`β`

(
n
`

)1/2 |Dn
` 〉, whose compression has been implemented

experimentally for n = 3 [25]. An implementation of our approach for n = 5 qubits in
Quirk [11] can be found following this link.

Proof. Our compression circuit starts with the reverse unitary U †n,n (using size O(n2) and
depth O(n)). It is followed by a mapping of states |0〉⊗n−` |1〉⊗` to the one-hot encoding
|0〉⊗n−` |1〉 |0〉⊗`−1, which can be implemented with size and depth O(n) with a simple stair
of CNOT -gates with control n− ` and target n− `+ 1 for increasing `, see Figure 5 (right).
Finally, the one-hot encoding |0〉⊗n−` |1〉 |0〉⊗`−1 is mapped to the binary encoding |`〉 of `
(with padded leading zeroes), as illustrated in Figure 5 (right):∑

αn−`β`
(
n
`

)1/2 |Dn
` 〉

U†n,n−−−−−−→
∑

αn−`β`
(
n
`

)1/2 |0〉⊗n−` |1〉⊗`
CNOT
stair−−−−−−→ αn |0〉⊗n +

∑
`>0

αn−`β`
(
n
`

)1/2 |0〉⊗n−` |1〉 |0〉⊗`−1
encoding
change−−−−−−→

∑
αn−`β`

(
n
`

)1/2 |`〉 .
It remains to show that mapping each state |0〉⊗n−` |1〉 |0〉⊗`−1 into the bottom dlog(n+ 1)e
qubits encoding |`〉 can be implemented with a circuit of size O(n2) and depth Õ(n).

This is done in the following way, for increasing `: First, controlled on qubit n − ` we
CNOT into the up to dlog(n + 1)e target bottom qubits which represent the number ` in
binary (for n and n− 1 these are the qubits themselves, on which we perform no operation).
Then, controlled on the binary representation in the last ` qubits (not including padded 0s),

3The referenced paper [23] provides no compilation down to standard gates and no analysis of the depth
of the circuit. The latter is found together with a step-by-step comparison of our approach in Appendix A.
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we perform a single multi-control Toffoli on the (n−`)th qubit as target. An implementation
of m-control Toffoli gates with CNOT and single-qubit gates requires at least 2m CNOT
gates [28], and it is known that a O(m) CNOT and single-qubit gates are sufficient [2],
even if no ancilla qubits are present [12]. This immediately gives us O(n log n) gates and
O(n log n) depth.

For LNN architectures, using SWAP gates we let each processed qubit n − ` (for ` ≥
dlog(n + 1)e) sift up to the top wires, in order to bring the next qubit n − ` − 1 into
direct neighborhood of the bottom dlog(n + 1)e qubits. Since sifting up operations can be
done in parallel, this requires O(n2) gates but only O(n) depth, see Figure 5 (right). As
mentioned, the O(n) many multi-target and multi-control operations can be implemented
using O(log n) (arbitrary 2-qubit) CNOT gates each. However, these might not be between
neighboring qubits. Moving qubits to neighboring positions and back needs up to O(log n)
SWAP operations. In total, this adds O(n log2 n) gates and depth, concluding our proof.

5 Conclusions
We presented a deterministic quantum circuit for the preparation of Dicke states |Dn

k 〉 with
depth O(n) and O(kn) gates in total. We showed that these bounds hold for Linear Nearest
Neighbor architectures, that the circuit can be extended to prepare arbitrary symmetric
pure states, and that we can use it for quantum compression. For future work, the main
open problem is that of characterizing the set of quantum states that can be prepared in
polynomial time, of which Dicke states are one example.
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A Quantum Compression: Comparison with other Work
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Figure 6: Comparison of two circuits mapping Dicke states |Dn
` 〉 to computational basis

states as a precursor to quantum compression: (left) Mapping to |0〉⊗n−` |1〉⊗` [this paper].
(right) Direct mapping to one-hot encoding |0〉⊗`−1 |1〉 |0〉⊗n−` [23].

In this appendix, we briefly review the differences between our quantum compression
circuit and the one given by Plesch and Bužek [23]. Both circuits start with a unitary
mapping Dicke states to computational basis states, with a small difference: While the
latter maps every Dicke state |Dn

` 〉 to the one-hot encoding |0〉⊗`−1 |1〉 |0〉⊗n−` of its Hamming
weight `, our circuit for starters maps it to the state |0〉⊗n−` |1〉⊗`. Surprisingly, our approach
leads to a quadratically improved circuit depth of O(n) over O(n2).

The two ideas behind the different mappings can be best described like this: In several
rounds, from a = 2 to a = n, we “scan” the first a qubits for excited qubits, “accumulating”
all found |1〉s at the bottom of the scanned a qubits. In contrast, the existing work counts
the number of encountered excited qubits, storing the counter in the one-hot encoding in the
first a qubits. These actions are defined in the following gates, see Figure 6 for placements:

(i) |00〉a−1 → |00〉a−1

|11〉a−1 → |11〉a−1√
1
a |01〉a−1 +

√
a−1
a |10〉a−1 → |01〉a−1

(ii) |00〉b |0〉a → |00〉b |0〉a
|01〉b |0〉a → |01〉b |0〉a
|00〉b |1〉a → |00〉b |1〉a
|11〉b |1〉a → |11〉b |1〉a√

a−b
a |01〉b |1〉a +

√
b
a |11〉b |0〉a → |01〉b |1〉a

(I ) |00〉1 → |00〉1
|11〉1 → |01〉1√

1
2 |01〉1 +

√
1
2 |10〉1 → |10〉1

(II ) |00〉b |0〉a → |00〉b |0〉a
|10〉b |0〉a → |10〉b |0〉a
|00〉b |1〉a → |00〉b |1〉a
|01〉b |1〉a → |01〉b |1〉a√

b+1
a |10〉b |1〉a +

√
a−b−1

a |01〉b |0〉a → |01〉b |0〉a

(III ) |0〉1 |00〉a−1 → |0〉1 |00〉a−1

|0〉1 |10〉a−1 → |0〉1 |10〉a−1

|0〉1 |11〉a−1 → |0〉1 |01〉a−1√
1
a |0〉1 |01〉a−1 +

√
a−1
a |1〉1 |00〉a−1 → |1〉1 |00〉a−1

A comparison of the results after each gate in the two approaches can be found in Table 1.
One can clearly see the two ideas of “accumulating” versus “counting” the encountered excited
qubits: After the end of each a-round, the states are the same up to a transformation on the
first a qubits of the form |0〉⊗a−` |1〉⊗` ←→ |0〉⊗`−1 |1〉 |0〉⊗a−`.
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Gate a b Result after each step, this paper (w/o parallelisation) Result after each step, existing work [23]

init
√
10 |D5

3〉
√
10 |D5

3〉
i/I 2 |00〉 |111〉+

√
6 |01〉 |D3

2〉+
√
3 |11〉 |D3

1〉 |00〉 |111〉+
√
6 |10〉 |D3

2〉+
√
3 |01〉 |D3

1〉
ii/II 3 1 |001〉 |11〉+

√
2 |010〉 |11〉+

√
6 |011〉 |D2

1〉+ |111〉 |00〉 |001〉 |11〉+
√
2 |100〉 |11〉+

√
6 |010〉 |D2

1〉+ |011〉 |00〉
i/III 3

√
3 |001〉 |11〉+

√
6 |011〉 |D2

1〉+ |111〉 |00〉
√
3 |100〉 |11〉+

√
6 |010〉 |D2

1〉+ |001〉 |00〉
ii/II 4 1

√
3 |001〉 |11〉+

√
3 |011〉 |01〉+

√
4 |011〉 |10〉

√
6 |010〉 |01〉+

√
3 |010〉 |10〉+ |001〉 |00〉

ii/II 4 2
√
6 |0011〉 |1〉+

√
4 |0111〉 |0〉

√
6 |0100〉 |1〉+

√
4 |0010〉 |0〉

i/III 4
√
6 |0011〉 |1〉+

√
4 |0111〉 |0〉

√
6 |0100〉 |1〉+

√
4 |0010〉 |0〉

ii/II 5 1
√
6 |0011〉 |1〉+

√
4 |0111〉 |0〉

√
6 |0100〉 |1〉+

√
4 |0010〉 |0〉

ii/II 5 2
√
10 |00111〉

√
10 |00100〉

ii/II 5 3
√
10 |00111〉

√
10 |00100〉

i/III 5
√
10 |00111〉

√
10 |00100〉

Table 1: Comparison of the result after each gate given in the two circuits of Figure 6 for the
exemplary input state |D5

3〉 (the normalization factor of 1√
10

has been omitted in all states).

The main difference in the circuits is that for each a, our gates form a stair-shape ending
in a gate of type (i), while a direct mapping to the one-hot encoding needs to have a “wrap-
around” three-qubit gate of type (III ). The latter prevents the parallelization achieved by
pushing stairs into each other as described in Section 3, see Figure 6.4 Hence all gates need
to be applied sequentially, giving a circuit of depth O(n2) compared to our depth O(n)
construction.

4We remark that in the original presentation [23] of circuit Figure 6 (right), it was claimed that gates of
type (III ) are not necessary to process the Dicke state |D5

3〉. However, as can be seen in Table 1, the first
such gate is required, and in general, for a Dicke state |Dn

` 〉 gates of type (III ) are required up to round
a = n− `+ 1 (the latest position where one may encounter an excited state for the very first time).
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